A uniform result for the dimension of fractional Brownian motion level sets

نویسندگان

چکیده

Let B={Bt:t?0} be a real-valued fractional Brownian motion of index H?(0,1). We prove that the macroscopic Hausdorff dimension level sets Lx=t?R+:Bt=x is, with probability one, equal to 1?H for all x?R.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Uniform Dimension Result for Two-dimensional Fractional Multiplicative Processes

Given a two-dimensional fractional multiplicative process (Ft)t∈[0,1] determined by two Hurst exponents H1 and H2, we show that there is an associated uniform Hausdorff dimension result for the images of subsets of [0, 1] by F if and only if H1 = H2.

متن کامل

Packing-dimension Profiles and Fractional Brownian Motion

In order to compute the packing dimension of orthogonal projections Falconer and Howroyd (1997) introduced a family of packing dimension profiles Dims that are parametrized by real numbers s > 0. Subsequently, Howroyd (2001) introduced alternate s-dimensional packing dimension profiles P-dims and proved, among many other things, that P-dimsE = DimsE for all integers s > 0 and all analytic sets ...

متن کامل

The level sets of iterated brownian motion

We show that the Hausdorff dimension of every level set of iterated Brownian motion is equal to 3/4. §

متن کامل

Fast Sets and Points for Fractional Brownian Motion

In their classic paper, S. Orey and S.J. Taylor compute the Hausdorff dimension of the set of points at which the law of the iterated logarithm fails for Brownian motion. By introducing “fast sets”, we describe a converse to this problem for fractional Brownian motion. Our result is in the form of a limit theorem. From this, we can deduce refinements to the aforementioned dimension result of Or...

متن کامل

Dimension of Fractional Brownian motion with variable drift

Let X be a fractional Brownian motion in R. For any Borel function f : [0, 1] → R, we express the Hausdorff dimension of the image and the graph of X+f in terms of f . This is new even for the case of Brownian motion and continuous f , where it was known that this dimension is almost surely constant. The expression involves an adaptation of the parabolic dimension previously used by Taylor and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2021

ISSN: ['1879-2103', '0167-7152']

DOI: https://doi.org/10.1016/j.spl.2020.108984